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NOTE 

A Divergence Theorem for a Nonlinear Dirichlet Problem’ 

Consider the Dirichlet problem 

Au =f(u), in G, 

u = $2 on r, 
(1) 

where A is the LaplacianJ may be nonlinear, q5 is a continuous function and G is a 
bounded domain in R” with piecewise smooth boundary lY Under appropriate 
conditions on f, it is known [l]-[3] that this problem and certain of its finite 
difference analogues have unique solutions. The purpose of this note is to establish, 
for a finite difference analogue of (l), a condition on the mesh size under which a 
particular successive approximation scheme fails to converge to the solution. 

If we discretize G into a lattice with equal spacing h, one finite difference analogue 
of (1) can be written as 

4bil = SW, i = l,..., N, 

uj = $j f j = N + l,..., M, 
(2) 

where A, is the central difference operator corresponding to A and u, and uj are 
the values of u at interior and boundary nodal points. 

One method of solving (2) is by taking an initial guess, z&O), for u and defining a 
sequence of approximations, (zP)), by 

&I”)] = f(u!k-i’) 2 7 i = l,..., N, 

u, = #j 9 j = N + l,..., M; k > 1. 
(3) 

THEOREM. lJ 
fW 2 IY, 

for some positive constant y, then {z.@> does not converge to the solution of (2) when 

where n is the dimension of R”. 

1 This work was performed under the auspices of the U.S. Atomic Energy Commission while 
the author was at the Applied Mathematics Department, Brookhaven National Laboratory, 
Upton, New York. 
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A NONLINEAR DIVERGENCE THEOREM 

Pro& We shall prove the result for n = 1; the cases for f~ > 2 
analogous manner. 

Denote the solution of (2) by u = (uI ,...9 uN). Suppose G) = u - zP. S 
&acting the matrix form of (3) from the matrix form of (2) gives 

and fi”’ is between z@) and ui . 
Since iI@ is irreducibly diagonally dominant, it is nonsing 

Mk exists and 

where p(M,) denotes the spectral radius of M.$ . For h2 > 4/y, p(Mk) > 1, which 
implies divergence. 
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